Asymmetric Synthesis of α-Substituted-γ-butyrolactone Empolying Prolinol Type of Auxiliaries

Jia Cheng NING, Shu MAO, Ye Di GUAN*

Department of Chemistry, Peking University, Beijing 100871

Abstract: Eleven (*S*)-(-)-bishydrocarbyl-(1-alkanoylpyrrolidin-2-yl)-methanol derivatives of three types were synthesized from L-proline, asymmtrically selective alkylation products were obtained by LDA treatment and alkylation using methyl 2-bromoethyl ether, and three types of chiral α -substituted- γ -butyrolactones were obtained by hydrolyzing the alkylation products, with %e.e. being up to 89 percent.

Keywords: Asymmetric synthesis, α -substituted- γ -butyrolactone.

Chiral α -substituted- γ -butyrolactone is an important block of naturally existing bioactive molecules and natural medicaments¹. Meyers *et al.*^{2,3} reported a method for synthesizing α -substituted- γ -butyrolactone in which oxazoline was used as chiral auxiliary. This paper employs proline type of chiral auxiliaries in the asymmetric synthesis of α -substituted- γ -butyrolactones. The new method provides a useful tool in organic synthesis. (*S*)-(-)-Bishydrocarbyl-(1-alkanoyl-pyrrolidin-2-yl)-methanol derivatives of three types were synthesized from L-proline, asymmetrically selective alkylation products were obtained by LDA treatment at -78° C and alkylation *via* a transition state in which metal ion takes part, and three types of chiral α -substituted- γ -butyrolactones were obtained by cleaving ether bond of the alkylation products using BBr₃ followed by hydrolyzing under conditions of 1mol/L HCl and at 100 °C (Scheme 1 and Table 1).

Chiral lactones can be prepared *via* (S)-(-)-bishydrocarbyl-(1-alkanoylpyrrolidin-2yl) methanol. We found that the bulkiness of R group in the compounds **3a-k** did affect the diastereoselectivity of the alkylation reaction (**Table 2**). It is quite evident that when R=Ph, the final butyrolactones showed higher enantioselectivity (87-89%, see **Table 3**), and when R=CH₃ or CH₂Ph, the final butyrolactones showed lower selectivity (19-47%).

Our proposed transition state (see **Figure 1**) might be as **Figure 1**. Evans⁴ approved that alkylation reaction took place preferentially from *Si*-face of an intermediate carrying a proline chiral auxiliary. Thus the ratio of two configurations of the double bond in the transition state greatly affects the selectivity of the asymmetric alkylation. Phenyl is a secondary radical which is larger than the primary radicals of methyl or benzyl, therefore its stereoselectivity is higher than latters.

^{*} E-mail:zhanggua@pku.edu.cn

Jia Cheng NING et al.

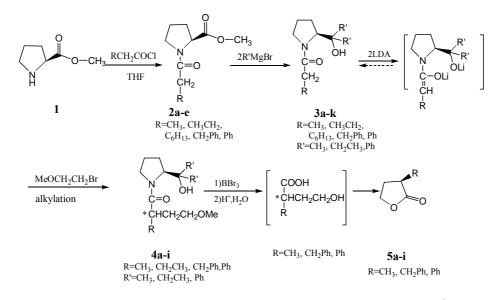
Substrate	R′	R	mp. (°C)	Yield (%)	$\left[\alpha\right]_{\rm D}^{20}$ (EtOAc)
3a	CH_3	CH_3	Viscous liquid	75	-36.4 (c,1.0)
3b	CH_3	$\mathrm{CH}_3\mathrm{CH}_2$	Viscous liquid	70	-66.1 (c,1.6)
3c	CH ₃	C_6H_{13}	Viscous liquid	76	-43.2 (c,2.2)
3d	CH ₃	$\mathrm{CH}_{2}\mathrm{Ph}$	Viscous liquid	80	
3e	CH ₃	Ph	106-7	73	-182.1 (c,2.0)
3f	$\mathrm{CH}_3\mathrm{CH}_2$	CH ₃	Viscous liquid	22	-74.0 (c,1.4)
3g	$\mathrm{CH}_3\mathrm{CH}_2$	$\mathrm{CH}_{2}\mathrm{Ph}$	Viscous liquid	30	-53.2 (c,1.5)
3h	$\mathrm{CH}_3\mathrm{CH}_2$	Ph	Viscous liquid	44	-63.6 (c,1.6)
3i	Ph	CH_3	68.5-70.2	52	-138.0 (c,1.3)
3ј	Ph	$\mathrm{CH}_{2}\mathrm{Ph}$	130-1	50	-118.3 (c,1.5)
3k	Ph	Ph	117-8	68	-92.6 (c,1.4)

 Table 1
 Synthesis of substrates (S)-(-)-3a-k bearing with a chiral auxiliary

 Table 2
 Synthesis of diastereoisomers (-)-4a-i

Compound	R′	R	Yield (%)	$\left[\alpha\right]_{D}^{20}$ (EtOAc)	Diastereoisomeric ratio
4a	CH3	CH3	55	-84.4 (c.1.0)	73:27
4b	CH_3	CH_2P	59	-63.7 (c,1.5)	74:26
4c	CH_3	Ph	85	-108.3 (c,2.7)	99:1
4d	CH ₃ C	CH_3	31	-55.4 (c,1.0)	75:25
4 e	CH ₃ C	CH_2P	68	-61.4 (c,2.0)	79:21
4f	CH ₃ C	Ph	54	-102.2 (c,1.0)	98:2
4g	Ph	CH ₃	67	-99.6 (c,1.2)	82:18
4h	Ph	CH_2P	29	-104.1 (c,1.6)	75:25
4i	Ph	Ph	52	-107.3 (c,1.0)	>99:1

Table 3 Synthesis results of α -substituted- γ -butyrolactone


Compound	R′	R	Yield (%)	$\left[\alpha\right]_{D}^{20}$ (EtOAc)	% e.e.*
5a	CH3	CH ₃	71	+11.6 (c.1.0)	47
5b	CH ₃	CH_2Ph	61	+20.4 (c,1.5)	41
5c	CH ₃	Ph	57	-1.69 (c,2.0)	89
5d	CH_3CH_2	CH_3			
5e	CH ₃ CH ₂	CH ₂ Ph	76	+14.3 (c,1.0)	32
5f	CH_3CH_2	Ph	72	-1.32 (c,1.0)	87
5g	Ph	CH_3	58	+8.9 (c,0.5)	36
5h	Ph	CH ₂ Ph	75	+12.1 (c,1.5)	19
5i	Ph	Ph	64	-1.67 (c,1.0)	88

*HPLC 1100 Chiralcel OD, 254nm, Hexane:isopropanol=95:5

Figure 1 The proposed transition state of (-)-4a-i

Scheme 1 Route of synthesis of 5a-i

The present work characterized the synthesized compounds through ¹HNMR, ¹³CNMR, MS, HRMS, rotational analysis, and/or HPLC chiralcel OD column.

 α -Substituted- γ -butyrolactones were synthesized stereo selectively by the new route, with %e.e. being up to near 90%. This work showed that the more bulky substituent, the higher the stereoselectivity.

References

- 1. E. J. Corey, X. M. Cheng, *The Logic of Chemical Synthesis*, John Weily & Sons Inc., **1989**, 244-268.
- 2. A. I. Meyers, E. D. Mihelich, J. Org. Chem., 1975, 40, 1186.
- 3. A. I. Meyers, et al., J. Org. Chem., 1980, 45, 2792.
- 4. D. A. Evans, J. M. Takacs, Tetrahydron Lett., 1980, 21, 4233

Received 3 December, 2003